On the 15th September 2017, a twenty year long mission by the NASA Cassini space probe came to an end when it plunged into Saturn’s upper atmosphere.

Launching in 1997, and planned for years beforehand, Cassini was intended to study as many moons as possible, in particular, those surrounding Jupiter and Saturn. One of the objects of the mission was also to learn more about the possible existence and availability of water in on the astral bodies it passed. In this regard alone, the many pictures taken by Cassini produced much revealing and exciting information.

Thanks to Cassini’s observations of Saturn’s largest moon, Titan, scientists have discovered that it possesses lakes, rivers, channels, dunes, rain, clouds, mountains and possibly volcanoes, just like Earth. Another of Saturn’s moons, Enceladus, revealed sprays of icy particles erupting from its surface; jets of ice-water three times taller than the width of Enceladus itself. Further, Cassini was able to get as close as 15 miles from this moon’s surface and determine that there was a global subsurface ocean, which might have the conditions suitable for sustaining life.

One of Jupiter’s moons, Europa, also shows extensive evidence of water. Its surface is covered with a layer of frozen ice, which scientists again believe hides an ocean beneath. As a consequence, Europa is often touted as a possible abode for life. Cynthia Phillips, a Europa project scientist at the Jet Propulsion Laboratory, believes there is a lot of indirect evidence for a liquid ocean, “We’re almost certain one is there…” she told “… the mass of Europa, combined with its density… gives a figure close to one [gram per cubic centimetre] …water is the only material like that.”

The question of the amount (or existence) of water in space has long been debated, often with a view to it sustaining mankind in the future. Mars in particular has attracted a lot of speculation of this nature. Images from the so-called Red Planet have shown dried up riverbeds, lakes, and coastlines across its surface. Recent satellite images from the Aeolis Dorsa region of Mars have uncovered new evidence of the densest river deposits recorded to date. These deposits are believed to date from water that flowed on the surface over 3.5 billion years ago. The channels and ridges formed by these ancient rivers are being studied in the hope that we can better understand the two evolutionary cycles of Mars and Earth, to see if links can be made.

With Cassini’s mission generating a colossal amount of data, scientists now have the opportunity to learn more about the environment of space, the evolution of numerous planetary moons, and the amount of water those moons and their commanding planets could hold now, or may have done in the past.

Will this information lead to mankind ultimately growing food- or even living- in Space? Only time will tell.

An architect’s day revolves around creating and developing designs for buildings (or entire settlements), and then communicating those design ideas to a client before either helping them make that design a reality, or adapting it into a real build possibility.

Typical tasks in the day-to-day of an architect include:

1) Tackling design problems
Often working as a team, time will be spent tackling spacial issues, a structures appearance, and cost, to make sure a design can go ahead to their client’s satisfaction. For example, a client might want a building to cover a certain amount of space and fulfil a number of functions. It is up to the architect to design the building in such a way that it meets those requirements.

2) Making drawings and 3-D computer models
Architects spend a lot of time making visual models and drawings of what proposed buildings will look like on completion. These models are mostly produced on the computer, and can be displayed as 2-D or 3-D pictures, allowing a client to see every angle of the design.

3) Coordinating with multiple different parties
Architects are the link between the clients who want the building constructed, the builders on the site, and the planning permission and council officers who might need to be involved in a property build. They also have to meet with other specialists, such as structural engineers, to make sure the build goes to plan.

Employment in the world of architecture is both challenging and exciting. You get to see your idea develop from an idea into a practical plan and schematic, then into an actual building, street, housing estate, town or city. It can be immensely rewarding and even influential to the character of a community.

Architects have to have very good attention to detail, as every part of their designs has to be perfect, or the buildings they are working on won’t work, or will be unsafe for use. Consequently the hours can be long in the quest to meet deadlines with flawless design plans.
From designer to budget manager, to customer liaison, an architect’s day involves a wide range of rewarding and challenging tasks.

Albert Einstein was born on March 14th, 1879 in Ulm, Württemberg, Germany. He was to go on to become the most celebrated physicists of all time.

Of a secular Jewish family, Einstein attended elementary school at the Luitpold Gymnasium in Munich. Einstein never settled at school and towards the end of the 1880s, Max Talmud, a Polish medical student became Albert’s informal tutor. It was Talmud who introduced Einstein to science.

Before he could finish his schooling, Einstein’s parents moved to Italy for better jobs. However, he chose to remain in Germany to finish his studies. This despite the fact that whilst he was good at maths and science, his teachers didn’t agree he was a worthy pupil. His Munich schoolmaster said “he will never amount to anything”. Hope for us all, perhaps.

Einstein went on to Zurich technical college. He graduated with only average marks, and two years later he was employed at a patent office in Bern. He found the work easy here, and was able to spend a good deal of his time thinking more about physics!

It was during this time that he wrote a paper entitled “On the electrodynamics of moving bodies”, which would later become known as Einstein’s Special Theory of Relativity. This showed that measurements of space and time were relative to motion, and this subsequently forced physicists to re-evaluate some of their most basic concepts.

As time passed, so Einstein’s fame and influence continued to grow. In 1915, he announced his most famous work, the General Theory of Relativity, which was the final culmination of an eight-year obsession with gravity. With its astonishing implications about the nature of time and space, it displaced Newtonian mechanics and shook the physics world. It suggested that space and time were one and the same and that gravity was not a force as Newton described, but rather the effect of objects bending space-time. His theory was given the weight of observational evidence when it was used to correctly predict anomalies in the orbit of Mercury; a problem that Newton’s theory of gravitation had been unable to resolve.

In 1919 the British physicist Arthur Eddington went to a small African island to observe the total eclipse of the Sun so that he could test Einstein’s theory; Einstein had predicted that gravity should bend light. The eclipse proved he was right, and our view of the Universe was changed forever. As a result of this and all his other work, Einstein was subsequently awarded the 1921 Nobel Prize.

Einstein continued to make substantial contributions to physics, including his desire to find a more complete and less complex theory for Quantum Physics. He sought to make sense of sub-atomic behaviour in a way that his general relativity theory could not.

Einstein died at the age of 76 on 18th April 1955, after suffering an abdominal internal bleed, which he refused to have treated. For all his successes, Einstein never was able to find a theory for Quantum Physics, though. He made a huge contribution to the way in which we understand the Universe, but with this failing, Perhaps some things are meant to evade the greatest of minds, though – it is a theory which still eludes physicists’ today.

Scientist and mathematician Galileo Galilei was born on February 15th, 1564, in Pisa, Italy. A pioneer of maths, physics and astronomy, Galileo’s career had long-lasting implications for the study of science.

In 1583, Galileo was first introduced to the Aristotelian view of the universe, which was a religion-based view of how the world worked. A strong Catholic, Galileo supported this view until 1604, when he developed theories on motion, falling objects, and the universal law of acceleration. He began to openly express his support of the controversial Copernican theory, which stated that the Earth and planets revolved around the sun, in direct contrast to the doctrine of Aristotle and the Church.

In July 1609, Galileo learned about a telescope which had been built by Dutch eyeglass makers. Soon he developed a telescope of his own, which he sold to Venetian merchants for spotting ships when at sea. Later that year, Galileo turned his telescope toward the heavens. In 1610 he wrote The Starry Messenger, where he revealed that the moon was not flat and smooth, but a sphere with mountains and craters. He discovered that Venus had phases like the moon, and that Jupiter had revolving moons, which didn’t go around the Earth at all.

With a mounting body of evidence that supported the Copernican theory, Galileo pushed his arguments against church beliefs further in 1613, when he published his observations of sunspots, which refuted the Aristotelian doctrine that the sun was perfect. That same year, Galileo wrote a letter to a student to explain how Copernican theory did not contradict Biblical passages, but that scripture was written from an earthly perspective, and that this implied that science provided a different, more accurate perspective.

In February 1616, a Church inquisition pronounced Galileo as heretical. He was ordered not to “hold, teach, or defend in any manner” the Copernican theory regarding the motion of the Earth. Galileo obeyed the order until 1623, when a friend, Cardinal Maffeo Barberini, was selected as Pope Urban VIII. He allowed Galileo to pursue his work on astronomy on condition it did not advocate Copernican theory.

In 1632, Galileo published the Dialogue Concerning the Two Chief World Systems, a discussion among three people: one supporting Copernicus’ heliocentric theory of the universe, one arguing against it, and one who was impartial. Though Galileo claimed Dialogues was neutral, the Church disagreed. Galileo was summoned to Rome to face another inquisition, which lasted from September 1632 to July 1633. During most of this time, Galileo wasn’t imprisoned, but, in a final attempt to break him, he was threatened with torture, and he finally admitted he had supported Copernican theory. Privately, though, he continued to say he was correct. This ultimately led to his conviction for heresy and as a result he spent his remaining years under house arrest.

Despite the fact he was forbidden to do so, Galileo still went on to write Two New Sciences, a summary of his life’s work on the science of motion and strength of materials. It was another work that has helped cement his place in history as the world’s most pioneering scientist, even if he was not fully appreciated in his own time. Galileo Galilei died on January 8th, 1642.

512px-Vehicle-Assembly-Building-July-6-2005On 29th July 1958, the National Aeronautics and Space Administration (NASA), was established by the U.S Congress.

NASA was designed to be a civilian rather than a government agency, which would be responsible for the coordination of all of the USA’s planned explorations into Space. Although the American government had been interested in exploring Space, it wasn’t until the Soviet Union’s launch of its first satellite, Sputnik I on October 4th, 1957 that they decided they needed make a public statement of their intensions to compete with Russia in what was to become known as The Space Race.

The launch of Sputnik I, (a cricket ball sized satellite which orbited the earth in 98 minutes), caught Americans by surprise and sparked fears that the Soviets might also be capable of sending missiles with nuclear weapons from Europe to America.

The Soviet’s launch of Sputnik II, which was large enough to carry a dog called Laika, in November 3rd, 1957, panicked America, and in December they attempted to launch a satellite of their own, called Vanguard, but it exploded shortly after takeoff.

It wasn’t until 1958, that the Americans started to prove they were as adept at space explorations as their Soviet rivals. On January 31, 1958, they launched Explorer I, the first U.S. satellite to successfully orbit the earth. This success went a long way to encourage the US Congress to grant the creation of NASA.

With President John F. Kennedy’s declaration in May 1961, that America planned to put a man on the moon by the end of the decade, the Space Race became increasing more competitive. It took eight years, but on July 20th, 1969, NASA’s Apollo 11 mission achieved Kennedy’s goal, when astronaut Neil Armstrong became the first person to set foot on the moon, saying, “That’s one small step for man, one giant leap for mankind.”

Although space exploration has slowed in the last decade, NASA continues to make advances in space exploration, including playing a major part in the construction of the International Space Station.
In 2004, President George Bush, like Kennedy before him, challenged NASA to return to the moon by 2020 and establish “an extended human presence” there that could serve as a launching point for “human missions to Mars and to worlds beyond.”

Only time will tell if his dream will also come true.


The steamboat Turbinia can be seen at Newcastle’s Discovery museum

For anyone interested in taking a break from the books for a bit and taking a field trip to a Science Museum, or wishing to take part in an event on any part of the subject, the following may be of interest…


British Science Week 2015 will take place 13 – 22 March. This is a ten-day celebration of science, technology, and engineering and features, entertaining and engaging events across the UK for people of all ages. You can find more information, including activity packs for different age groups,  through their website at  . Anyone can organise an event or activity, and the British Science Association helps organisers plan by providing what are free support resources.

The Big Bang Fair UK: Young Scientists and Engineers Fair
This fantastic event is coming back to the NEC this month from 11 – 14 March 2015. Visitors can meet engineers and scientists from large multinational corporations and a range of diverse and unique UK companies.

The Summer Science Exhibition at the Royal Society London
The Royal Society’s Summer Science Exhibition is their main public event of the year and showcases the most exciting cutting-edge science and technology research and provides a unique opportunity for the public to interact with scientists.
The Royal Society Summer Science Exhibition 2015 runs from 30 June – 5 July at the Royal Society, London.

There are a great many science museums in the UK. Here are some of the best.

1) Science Museum, Birmingham includes a science garden, planetarium and an interactive show which lets children explore the human body by seeing what it’s like to shrink to the size of a living cell.

2) National Space Centre, Leicester. Here you can explore the wonders of the Universe and discover the science behind the search for extra-terrestrial intelligence, plus take a tour of the 42m high rocket tower. There is also the Sir Patrick Moore Planetarium.

3) Museum of the History of Science, Oxford, has an unrivalled collection of early scientific instruments in the world’s oldest surviving museum building.

4) Museum of Science and Industry (MOSI), Manchester is currently showing a 3D printing exhibition.

5) The Science Museum, London contains a new nanotechnology exhibition, and the space travel exhibition is outstanding. I found the history of medical science exhibition very good.

6) Techniquest, Cardiff is currently showing an exhibition of colourful chemistry over the weekends 28 February – 22 March.

7) MAGNA, Rotherham has a fantastic electric arc furnace exhibition, including pyrotechnics.

8) Discovery Museum Newcastle
This museum houses the finest collections of scientific material outside London and has important collections of maritime history.
The museum contains Charles Parsons’ ship, Turbinia, and Joseph Swan’s historic lightbulbs.
The Turbinia is my favourite museum exhibit which I saw on a school trip in 1967. She was designed by the Tyneside engineer Sir Charles Parsons in 1894 and was the world’s first ship to be powered by steam turbines. Until 1899, Turbinia was the fastest ship in the world, reaching speeds of up to 34.5 knots.


Fox Talbot, with camera.

We have always learned a great deal from the use of texts, and of course from traditional word of mouth down the years. Where, however, would we be, without the picture? Or more specifically, the photograph? A drawing can tell us a lot, but a real image can provide us with even more – a real, genuine feel for the subject we are studying. For this reason, William Henry Fox Talbot, should be worth of a mention.

Fox Talbot was born on 11 February 1800 in Melbury, Dorset. He went to Cambridge University at the age of 17 in 1817, and in 1832 he was elected as an MP for Chippenham in Wiltshire, where he lived with his wife, Constance Mundy.

On a visit to Lake Como in Italy in 1833, Talbot was trying to draw the view before him, but his lack of success at capturing the beauty of the scenery prompted him to think about how he might create a machine that could capture the scene for him.

Once back at his home in Lacock in Wiltshire, Talbot began work on this project, using light-sensitive paper that he hoped would make sketches automatically.

Talbot was not the first inventor to have this idea. Thomas Wedgwood had already made photograms, which had successfully left lasting silhouettes of objects on paper, but these faded quickly. Then in 1839, Louis Daguerre invented the ‘daguerreotype.’ This was a system by which pictures could be captured onto silver plates.

Only three weeks after Daguerre revealed his invention, Fox Talbot reported his ‘art of photogenic drawing’ to the Royal Society. This process showed how to capture prints on thin pieces of paper that had been made light sensitive. This invention was to become the first step in the development of modern photography.

In 1841 Talbot went on to develop his photographic ideas further, when he invented the ‘calotype’ process. This involved discovering the three most essential elements required to develop pictures: developing, fixing, and printing photographs.

Talbot found that although exposing photographic paper to light produced an image, he believed it required extremely long exposure times to achieve success. Then, by accident, Talbot discovered that an image could actually be achieved after a very short exposure time, and could then be chemically fixed into a negative. This negative removed the light-sensitive nature of the print, and enabled the finished picture to be viewed in bright light.

With these new negative images, Fox Talbot could repeat the process of printing from the negative as many times as he liked. This was a major advance from the French daguerreotypes, which could only be used once.

In 1842 Talbot was awarded a medal from the Royal Society for his work in the progression of photography.

The work William Henry Fox Talbot had done on the calotype process, led to future inventors advancing the photographic process even further in the 19th and 20th centuries.

512px-Hammer365_070_295_Pen_and_Print_(4425571355)In order to obtain the best result when writing a project, report, dissertation, or an essay, a student must undertake a comprehensive reading of the subject in question.

To prove that you have used a variety of sources for your research, it is important to reference the sources you have read correctly. Whether you use online sources, books, or periodicals, or a combination of all three, footnotes or endnotes should be used to display every document you have used.



When you make a statement within your work that has been generated from reading a specific book, then you need to reference that fact. This is done by placing a small number next to the full stop that ends the sentence in question. This number is often (although not always) placed within closed brackets. The following sentence would therefore appear like this in your text;

The son of Edward II, also Edward, was dealt a challenge in the ruling of England that was more difficult than any monarch who’d come before him. (1)

Then, at the bottom of the page in which that sentence appears, you should record the full reference as below.

1. Prestwich, M., The Three Edwards: War and State in England 1272-1377 (London, 1980), pp.20-26
Should multiple references appear on the same page, then they should be listed in numerical order. For example-

1. Prestwich, M., The Three Edwards: War and State in England 1272-1377 (London, 1980), pp.20-26
2. Knight, S,. Robin Hood: A Complete Study of the English Outlaw (Oxford, 1994), pp.59-60
3. Holt, J., Robin Hood (London, 1982), pp.1-9



Some tutors prefer their students to use endnotes rather than footnotes. The process of referencing within the body of your project remains the same as with footnotes. Rather than placing your references at the foot of each page, however, they should be listed all together in numerical order at the very end of your document.

Whether you use footnotes or endnotes, the references themselves should always be set up with the author’s surname first, followed by their first name or initials. Then comes the book title (underlined), followed by the publication location and date in brackets. Last of all, you need to record the page (p.) or pages (pp.) that are specific to the reference you are making within your text.

Caribbean_skies_(6980006312)It’s summer, and perhaps we shall see some blue skies overhead. A nice sight, certainly, but is it anything more?

Blue-Sky means having the pleasant appearance of a blue sky. A completely blue sky has no opaque objects, in other words no clouds. Similarly, Blue-Sky Thinking was considered to be empty thinking (i.e. a blue sky without clouds) and in this case without the tarnish of any ideas at all. More specifically, Blue-Sky Thinking means fanciful thinking, hypothetical, not practicable or profitable in the current state of knowledge or technical development. The use of Blue-Sky goes back to 1906, when it was used in the context of Blue-Sky securities, which are worthless securities. Those people trading in worthless securities, something that would later be referred to as junk bonds, were said to be selling “Blue-Sky and hot air” and so were called “Blue-Sky merchants.” In 1948, Blue-Sky securities indicated a bad investment or a fraud.

Blue-Sky was used in a different way in the 1920’s, in a work called Raymond Robins’ Own Story, by W.Hard, which refers to Lenin and Trotsky never giving any Blue-Sky talk. In other words, they never promised anything without the power and the will to deliver. Later, in 1956, the phrase Blue-Sky book came into being in the U.S. This type of book is a literary work which lacks any expert knowledge or specific technique. Similarly, there is a quote in the Times in 1977 regarding Blue-Sky technologies, which are those where there are no real world applications immediately apparent. So Blue-Sky carries a theme where there is nothing useful, nothing concrete or practicable. Ref: English Oxford Dictionary.

Blue-Sky Thinking is currently considered to be thinking that is not based or connected with the realities in the present moment. It allows for creative ideas where there is no restriction or limitation placed on them from current thinking or beliefs.

There is a similar usage, which is the phrase, “Thinking Outside The Box”, which means thinking creatively, freely, without restriction or conventional constraint. The origin of this is from the U.S. in the late 1960’s/early 1970’s. There is an early example in the Aviation Week & Space Technology Magazine, in July 1975, which says, “We must step back and see if the solutions to our problems lie outside the box.”
The ‘box’ represents rigid and unimaginative thinking, so out of the box is a distinct contrast. Thinking outside the box and Blue-Sky thinking essentially mean the same thing, the latter phrase being the older of the two.
These phrases described above relate to the work of Edward De Bono, a psychologist and inventor, who gave encouragement in the U.K. to find solutions from outside our normal thinking behaviour. He also coined the phrase Lateral Thinking, in 1967, and went on to develop it as a method of structured creativity.

All this given to the world of business and beyond, from a simple, pleasant sight of nature and environment.






512px-Laura_RobsonWith Wimbledon coming up, we thought it would be fitting to think about spinning tennis balls.

The basic spin shots in tennis are topspin, backspin, and slice or side-spin on the serve.
The spinning of tennis balls is defined by Bernoulli’s principle which states that when the velocity of a fluid increases the pressure decreases. Air behaves as a fluid and so when a tennis ball is spinning the air flows faster on one side of the ball and slower on the other. This creates a pressure difference on the two sides of the ball which in turn creates a force on the ball towards the area of low pressure causing the ball to move through a curve.

When a ball rotates, the air in contact with the ball’s surface rotates with the ball. The hairy, fuzzy nature of a tennis ball means it has the ability to drag a lot of air relative to a smooth ball, and therefore spin is enhanced.

A topspin shot is made by sliding the racquet strings up and over the ball. The friction between the racquet strings and the ball makes the ball spin forward, towards the opponent. The shot dips down after impact and also bounces at a lower angle to the ground than a shot hit with no topspin. This is the normal direction of spin when a ball bounces due to friction from contact with the ground, but additional spin is applied by the strings. This additional forward spin makes the ball come off the ground at speed.

A backspin shot is hit by sliding the racquet strings underneath the ball as it is struck. This causes the ball to spin towards the player who just hit it. This stroke requires about half the racket head speed of a topspin shot because the player is not required to change the direction of spin. When the ball bounces it comes off the ground at a slower speed to a topspin shot.

In the case of topspin, the top of the ball spins into the oncoming air and the front of the ball moves downwards dragging air down with it. More air gets pulled under the ball than goes above it. Since more air has to pass under the ball it has to move faster. This means there needs to be a higher velocity on the lower side of the ball, and subsequently a lower velocity on the top of the ball.
On the top side of the ball this lower velocity creates a higher pressure, and at the bottom the higher velocity creates a lower pressure as in Bernoulli’s Law. With high pressure on top and low pressure on the bottom, there is an imbalance in the forces on the ball which curves it downward from its straight line path. In backspin, the same principles are in action, except in this case the bottom of the ball has the lower velocity so the pressure is higher. The same principle also applies to side-spin.

To see all these types of spin being put to good use, simply turn tune in to the Championships in the next few days.



Connect with Oxford Home Schooling